当前位置: > 设A是实矩阵,证明:A转置乘A与A乘A转置的秩相同....
题目
设A是实矩阵,证明:A转置乘A与A乘A转置的秩相同.

提问时间:2021-03-15

答案
若Ax=0,则A'Ax=0; 若A'Ax=0,则x'A'Ax=0,即(Ax)'Ax=0,故Ax=0.
从而方程Ax=0跟方程A'Ax=0通解.所以r(A'A)=r(A);同理有r(AA')=r(A').
且注意到r(A)=r(A'),故r(A'A)=r(A'A).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.