当前位置: > 已知正等比数列{an}中,a1=2,且-2a2,a3+2,28成等差,(1)求数列{an}的通项公式;...
题目
已知正等比数列{an}中,a1=2,且-2a2,a3+2,28成等差,(1)求数列{an}的通项公式;
(2)设bn=(n的平方+n)/an,如果对一切实数n都有bn小于等于t成立,求t的大小

提问时间:2021-03-15

答案
设an=a1*q^(n-1)=2q^(n-1),因为-2a2,a3+2,28成等差,所以
2(a3+2)=-2a2+28,得到2(2q^2+2)=-2*2q+28,解得q=2或-3(舍去)
所以an=2*q^(n-1)=2^n;
3.bn=(n^2+n)/an=(n^2+n)/2^n,如果对一切实数n都有bn小于等于t成立,那么t=3/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.