当前位置: > 已知向量a=(cosx,sinx),b=(-cosx,cosx),c=(-1,0),当x属于(π/2,9π/8)时,求f(x)=2ab+1的最大值...
题目
已知向量a=(cosx,sinx),b=(-cosx,cosx),c=(-1,0),当x属于(π/2,9π/8)时,求f(x)=2ab+1的最大值

提问时间:2021-03-15

答案
∵a•b=-(cosx)^2+sinxcosx
=-(1+cos2x)/2+sin2x/2
=(sin2x-cos2x)-1/2
=√2[(√2/2)sin(2x)-√2/2cos(2x)]-1/2
=√2sin(2x-π/4)-1/2
∴2ab+1=2√2sin(2x-π/4)
又∵x∈(π/2,9π/8)
∴f(x)的最大值为2,此时x=π/2
题目可能出错了 x应该∈[π/2,9π/8]
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.