当前位置: > 设A是任意n阶矩阵,A^m=0,而I是n阶单位矩阵,证明I—A可逆,且(I—A)=I+A+A^2+……+A^m-1...
题目
设A是任意n阶矩阵,A^m=0,而I是n阶单位矩阵,证明I—A可逆,且(I—A)=I+A+A^2+……+A^m-1

提问时间:2021-03-15

答案
这就是基本的初等数学公式啊,
显然
(I-A)(I+A+A^2+…+A^m-1)
=I -A^m
而A^m=0
所以
(I-A)(I+A+A^2+…+A^m-1)=I
同理
(I+A+A^2+…+A^m-1)(I-A)=I
那么由逆矩阵的定义就可以知道,
I-A是可逆的,而其逆矩阵为 I+A+A^2+…+A^m-1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.