当前位置: > n个连续整数的乘积一定能被n!整除...
题目
n个连续整数的乘积一定能被n!整除
如题,可以证明一下么?
....
不是你们理解的那样
比如说K为整数,从K起以后的连续n个整数的乘积能被n!整除
k=1时就是一楼所说的情况
可只是其中一种最最特殊的情况啊
另外,所以可以放心的运用高中的知识

提问时间:2021-03-15

答案
设a为任一整数,则式:
(a+1)(a+2)...(a+n)
=(a+n)!/a!
=n!*[(a+n)!/(a!n!)]
而式中[(a+n)!/(a!n!)]恰为C(a+n,a),也即是从a+n中取出a的组合数,当然为整数.
所以(a+1)(a+2)...(a+n)一定能被n!整除
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.