当前位置: > 一串数1、4、7、10、…、397、400相乘,则所得的积的尾部零的个数为_....
题目
一串数1、4、7、10、…、397、400相乘,则所得的积的尾部零的个数为______.

提问时间:2021-03-14

答案
由于这串数字从被5整除开始以后各数均是前一个数加3,所以在这串数中被5整除的相邻的两个数相差 5×3=15;
则这样的数共有10,25,40,…400.共有(400-10)÷15+1=27个;
其中25,100,175,325,400含有两个因数5,250含有3个因数5(因为在27中已经各自计算过1个5,所以剩余5的个数为5+2=7个).
所以乘积尾部零的个数为27+5+2=34,
故答案为:34.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.