当前位置: > 求证 等边三角形的外接圆的半径R是内切圆半径r的2倍...
题目
求证 等边三角形的外接圆的半径R是内切圆半径r的2倍

提问时间:2021-03-14

答案
证明:做任意等边三角形
做外接圆,内切圆
取圆心分别连接三角形一顶点和一边底边中点
根据定理:30度所对的边是斜边的一半
得出答案:
即:
等边三角形的外接圆半径R室内切圆半径r的二倍
比如说作一个三角形,再作它的外接圆和内接圆.三角形顶点分别为A,B,C.三角形边长为1.
两圆圆心就是三角形中心设为O点,过O点作三角形的高,
高与底边交点为D点,连接O,D,A组成一个三角形.
则角DAO为30度.又因为角ADO为90度.
由直角三角形30度所对的边是直角边的一半可得
OD=1/2OA即;等边三角形的外接圆半径R室内切圆半径r的二倍
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.