当前位置: > 三角形ABCD是正方形,PD⊥面ABCD,PD=PC,E是PC的中点,证明DE⊥面PBC,...
题目
三角形ABCD是正方形,PD⊥面ABCD,PD=PC,E是PC的中点,证明DE⊥面PBC,

提问时间:2021-03-14

答案
证明:因为PD⊥平面ABCD,所以PD⊥BC;因为四边形ABCD为正方形,所以BC⊥DC;由PD⊥BC,BC⊥DC,可知BC⊥平面PDC,因为DE在平面PDC上,所以BC⊥DE.因为PD=DC,所以三角形PDC是等腰三角形,又因为E是PC中点,所以DE⊥PC.由BC⊥D...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.