当前位置: > 在三角形ABC中cosA=-5/13,sinB=4/5,BC=5,求三角形ABC的面积...
题目
在三角形ABC中cosA=-5/13,sinB=4/5,BC=5,求三角形ABC的面积
RT

提问时间:2021-03-14

答案
因为cosA=-5/13,sinB=4/5,A是钝角,B是锐角,
则sin A=12/13,cos B=3/5,
SinC=sin(A+B)=sin A cos B +cos A sin B=16/65.
由正弦定理得:5/sin A=AB/ sinC,AB=4/3.
面积为1/2•AB•BC•sin B=8/3.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.