题目
当x>0时,证明:不等式ex>1+x+
x2成立.
1 |
2 |
提问时间:2021-03-14
答案
证明:令f(x)=ex−1−x−
x2,
则f'(x)=ex-1-x,
再令g(x)=f'(x),则g'(x)=ex-1,
∵x>0,∴ex-1>0,即g'(x)>0,
∴g(x)在[0,+∞)上为增函数,
由于x>0,则g(x)>g(0)=e0-1=0,即f'(x)>0,
∴f(x)在[0,+∞)上为增函数,
由x>0知,f(x)>f(0)=e0−1−0−
×02=0,
即ex-(1+x+
x2)>0,
∴ex>1+x+
x2,得证.
1 |
2 |
则f'(x)=ex-1-x,
再令g(x)=f'(x),则g'(x)=ex-1,
∵x>0,∴ex-1>0,即g'(x)>0,
∴g(x)在[0,+∞)上为增函数,
由于x>0,则g(x)>g(0)=e0-1=0,即f'(x)>0,
∴f(x)在[0,+∞)上为增函数,
由x>0知,f(x)>f(0)=e0−1−0−
1 |
2 |
即ex-(1+x+
1 |
2 |
∴ex>1+x+
1 |
2 |
构造函数f(x)=ex−1−x−
x2,通过计算发现f(0)=0,只需证明f(x)在[0+∞)上为增函数即可,问题转化为证明f'(x)>0,再令g(x)=f'(x),通过计算又发现g(0)=0,只需证明g(x)在[0+∞)上为增函数即可,问题转化为证明g'(x)>0,而此式容易证明.
1 |
2 |
不等式的证明.
1.当求证不等式是由几个基本初等函数构成的比较复杂的条件不等式,可考虑通过构造新的函数,利用导数研究函数的单调性,从而达到证明的目的.
2.利用导数证明不等式是近几年高考的热点之一,证明f(x)>g(x)的一般步骤是:
(1)构造函数h(x)=f(x)-g(x);
(2)求h'(x);
(3)判断h(x)的单调性;
(4)求h(x)的最小值或值域;
(5)证明[h(x)]min>0成立;
(6)得出结论.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1已知(2010-a)的平方+(2009-a)的平方=1,则(2010-a)(2009-a)=
- 2Have you come up with sone new ideas?
- 3求计算此行列式的详细过程
- 4Little是表示否定的意思吗?
- 5水的压强 (二)
- 6物理====声音的产生和传播
- 7五分之三的分数单位是五分之一,它有三个这样的分数单位,再添上( )个这样的分数单位就是最小的质数?
- 8负责任的这个词英文是什么
- 9翻译.她们想要一些鱼和两杯橙汁.
- 10已知点A,B的坐标分别是(-1,0),(1,0),直线AM,BM相交于点M,且直线AM与直线BM的斜率之差是2,则点M的轨迹方程是( ) A.x2=-(y-1) B.x2=-(y-1)(x≠±1)