当前位置: > 已知椭圆 x24+y2=1的左顶点为A,过A作两条互相垂直的弦AM、AN交椭圆于M、N两点. (1)当直线AM的斜率为1时,求点M的坐标; (2)当直线AM的斜率变化时,直线MN是否过x轴上的一定点,...
题目
已知椭圆 
x2
4
+y2=1
的左顶点为A,过A作两条互相垂直的弦AM、AN交椭圆于M、N两点.
(1)当直线AM的斜率为1时,求点M的坐标;
(2)当直线AM的斜率变化时,直线MN是否过x轴上的一定点,若过定点,请给出证明,并求出该定点,若不过定点,请说明理由.

提问时间:2021-03-14

答案
(1)直线AM的斜率为1时,直线AM:y=x+2,(1分)
代入椭圆方程并化简得:5x2+16x+12=0,(2分)
解之得x1=-2,x2=-
6
5
,∴M(-
6
5
4
5
)
.(4分)
(2)设直线AM的斜率为k,则AM:y=k(x+2),
y=k(x+2)
x2
4
+y2=1
化简得:(1+4k2)x2+16k2x+16k2-4=0.(6分)
∵此方程有一根为-2,∴xM=
2-8k2
1+4k2
,(7分)
同理可得xN=
2k2-8
k2+4
.(8分)
由(1)知若存在定点,则此点必为P(-
6
5
,0)
.(9分)
kMP=
yM
xM+
6
5
=
k(
2-8k2
1+4k2
+2)
2-8k2
1+4k2
+
6
5
=
5k
4-4k2
,(11分)
同理可计算得kPN=
5k
4-4k2
.(13分)
∴直线MN过x轴上的一定点P(-
6
5
,0)
.(16分)
(1)根据直线AM的斜率为1时,得出直线AM:y=x+2,代入椭圆方程并化简得:5x2+16x+12=0,解得点M的坐标即可;(2)对于是否过x轴上的一定点问题,可先假设存在,设直线AM的斜率为k,则AM:y=k(x+2),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系即可求得P点的坐标,从而解决问题.

直线与圆锥曲线的综合问题.

本题考查直接法求轨迹方程、直线与抛物线的位置关系、直线过定点问题.考查推理能力和运算能力.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.