当前位置: > 设x∈R,f(x)=(1/2)|x|,若不等式f(x)+f(2x)≤k对于任意的x∈R恒成立,则实数k的取值范围是_....
题目
设x∈R,f(x)=(
1
2
)

提问时间:2021-03-14

答案
∵f(x)=(
1
2
)
|x|

∴函数f(x)在区间(-∞,0]上为增函数,在区间[0,+∞)上为减函数,
且函数f(2x)在区间(-∞,0]上为增函数,在区间[0,+∞)上为减函数,
令F(x)=f(x)+f(2x),
根据函数单调性的性质可得F(x)=f(x)+f(2x)在区间(-∞,0]上为增函数,在区间[0,+∞)上为减函数,
故当x=0时,函数F(x)取最大值2,
若不等式f(x)+f(2x)≤k对于任意的x∈R恒成立,
则实数k的取值范围是k≥2
故答案为:k≥2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.