当前位置: > 用分部积分法求 不定积分[(lnx)³/x²]dx...
题目
用分部积分法求 不定积分[(lnx)³/x²]dx

提问时间:2021-03-14

答案
∫[(lnx)^3/x^2]dx
=-∫(lnx)^3d(1/x)
=-(lnx)^3/x + 3∫[(lnx)^2/x^2 ]dx
=-(lnx)^3/x - 3∫[(lnx)^2d(1/x)
=-(lnx)^3/x - 3(lnx)^2/x - 6∫lnxd(1/x)
=-(lnx)^3/x - 3(lnx)^2/x - 6lnx/x + 6∫(1/x^2) dx
=-(lnx)^3/x - 3(lnx)^2/x - 6lnx/x - 6/x + C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.