题目
一道高三解析几何题
设f1,f2分别是椭圆x2/9+y2/4=1的左右焦点,若点p在椭圆上,且|向量pf1+向量pf2|=2根号5,求向量pf1和向量pf2的夹角
设f1,f2分别是椭圆x2/9+y2/4=1的左右焦点,若点p在椭圆上,且|向量pf1+向量pf2|=2根号5,求向量pf1和向量pf2的夹角
提问时间:2021-03-13
答案
首先,得f1(-√13,0),f2(√13,0);
设P(x,y),
则向量Pf1=(-√13-x,-y),Pf2=(√13-x,-y);
|向量pf1+向量pf2|=|(-2x,-2y)|=2√5,即4x^2+4y^2=20,x^2+y^2=5;
向量Pf1与Pf2夹角为tanα=|(k1-k2)/(1+k1k2)|,k1,k2分别为Pf1,Pf2斜率,即:
k1=y/(√13+x),k2=-y/(√13-x),
将k1,k2代入得:2√13y/(13-x^2)/(13-x^2-y^2)/(13-x^2)=2√13y/(13-x^2-y^2)=√13y/4,
由x^2/9+y^2/4=1.① x^2+y^2=5.②得x=3√5/5,y=4√5/5
把y代入,则tanα=√65/5,α=arctan√65/5.
由于是夹角,所以x,y全取正就行.
因为没有草纸,不知道答案对不对,但思路应该没错,如果有误,还望见谅.
设P(x,y),
则向量Pf1=(-√13-x,-y),Pf2=(√13-x,-y);
|向量pf1+向量pf2|=|(-2x,-2y)|=2√5,即4x^2+4y^2=20,x^2+y^2=5;
向量Pf1与Pf2夹角为tanα=|(k1-k2)/(1+k1k2)|,k1,k2分别为Pf1,Pf2斜率,即:
k1=y/(√13+x),k2=-y/(√13-x),
将k1,k2代入得:2√13y/(13-x^2)/(13-x^2-y^2)/(13-x^2)=2√13y/(13-x^2-y^2)=√13y/4,
由x^2/9+y^2/4=1.① x^2+y^2=5.②得x=3√5/5,y=4√5/5
把y代入,则tanα=√65/5,α=arctan√65/5.
由于是夹角,所以x,y全取正就行.
因为没有草纸,不知道答案对不对,但思路应该没错,如果有误,还望见谅.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1一张纸的厚度约为0.075——(填单位)
- 2My mother is an architect,she has been an architect for several years.When she is working,she usua
- 3数字推理 3.3.6.24() 1.1.3.4.9.7() 30.10.2.6() 23.29.().37.41 113.202.222.400.()
- 4想象圆明园中一处景观当年的美丽和神奇
- 5《罗马法》内容是?
- 6人教版六年级上册数学书40-42页答案
- 7平行四边形面积96平方分米,从一个顶点到另外两条边的中点连成一个三角形
- 8another last
- 9柳永的代表词有哪些?
- 10我们该如何向孩子形容这个世界?
热门考点