当前位置: > 设函数f(x)=ax-2bx+cx+4d(a,b,c,d∈R)的图像关于原点对称,且x=1时,f(x)取极小值-1/3,...
题目
设函数f(x)=ax-2bx+cx+4d(a,b,c,d∈R)的图像关于原点对称,且x=1时,f(x)取极小值-1/3,
(1)求a,b,c,d的值;(2)若x1,x2∈[-1,1],求证:|f(x1)-f(x2)|≤2/3

提问时间:2021-03-13

答案
(1) 由对称,得b=0 ,d=0,f‘(1)=3a+c=0 f(1)=a+c=1/3,a=-1/6 ,c=1/2 (2)等价于证f(x)max-f(x)min≤2/3 有f(x)max=f(1)=1/3 f(x)min=-1/3 故得证
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.