当前位置: > 设函数f(x)=2−x−1,x≤0x1/2,x>0,若f(x0)>1,则x0的取值范围是_....
题目
设函数f(x)=
2−x−1,x≤0
x
1
2
,x>0
,若f(x0)>1,则x0的取值范围是______.

提问时间:2021-03-13

答案

①当x0≤0时,可得2-x0-1>1,即2-x0>2,所以-x0>1,得x0<-1;
②当x0>0时,x00.5>1,可得x0>1.
故答案为(-∞,-1)∪(1,+∞)
根据函数表达式分类讨论:①当x0≤0时,可得2-x-1>1,得x<-1;②当x0>0时,x0.5>1,可得x>1,由此不难得出x0的取值范围是(-∞,-1)∪(1,+∞).

指数函数的单调性与特殊点;幂函数的单调性、奇偶性及其应用.

本题考查了基本初等函数的单调性和值域等问题,属于基础题.利用函数的单调性,结合分类讨论思想解题,是解决本题的关键.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.