当前位置: > 线代证明|A*|=|A|^(n-1) n≥2...
题目
线代证明|A*|=|A|^(n-1) n≥2

提问时间:2021-03-13

答案
①.rA<n-1:|A|=0=|A*|.(A*的元素都是0),|A*|=|A|^(n-1)成立.
②.rA=n-1:|A|=0.AX=0的基础解系只含一个解.(X是列向量)
而AA*=|A|E=0.A*的列向量都是AX=0的解,必须成比例.∴|A*|=0
|A*|=|A|^(n-1)成立.
③.rA=n:|A|≠0.AA*=|A|E.
|A||A*|=||A|E|=|A|^n,消去|A|≠0.得到:|A*|=|A|^(n-1).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.