题目
y=((tanx)^cos(x)) 求当 x 接近 -(90)度时,y的极限
提问时间:2021-03-13
答案
y=(tanx)^cos(x)=e^(ln(tanx)/secx)
然后利用罗必达法则,求导
limit=e^(secx^2/tanx/secx/tanx)=e^(cosx/sinx^2)
x->pi/2,代入得极限为e^0=1.
不是很好写,希望能看明白
然后利用罗必达法则,求导
limit=e^(secx^2/tanx/secx/tanx)=e^(cosx/sinx^2)
x->pi/2,代入得极限为e^0=1.
不是很好写,希望能看明白
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1a person who is very kind and cares for others请问这个是angel的英文解释吗?
- 2What (did )you (do )on your holiday?选空的含义
- 3一个棱长是4分米的正方体水箱装满了水,若把这箱水倒入一个长8分米、宽4分米的长方体水箱,水有多深?
- 4关于全自动洗衣机上水管的问题
- 5用久了的黑板会反光,这是光的 现象 从不同方向我们都能看到屏幕上的图像,这是
- 6目前已知绕太阳公转的行星从远到近有( )、( )、( )、 ( )、( )、( )、( ).
- 7There was a golden sunset that evening.
- 8如图,E为正方形ABCD的边AB上的一点,AE=3,BE=1,P为AC上的动点,则PB+PE的最小值为_.
- 9在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为( ) A.1 B.2 C.3 D.4
- 10解比例:(x-1):4.6=0.5:0.23
热门考点
- 1水果店有90筐苹果和80筐梨子,苹果共重1800千克,今天上午卖出苹果总量的五分之一,
- 2小虎在计算1.86加上一个一位小数时,由于错误地把数的末尾对齐,结果得到2.28
- 3小免子丁丁帮妈妈拔萝卜,每天能拔5分之2千克,可今天她只拔了4分之3天,那有多少千克呢?
- 4已知集合A={xx的平方+4x+p+1=0,x属于R}且A交集于R(R上方有个+号)=空集,求实数p的取值范围(给出答案...
- 5How happy the boy (look)!
- 6Vt2-V02=2as推理过程?大虾急救啊
- 7Still water runs deep.(静水流深)出自哪里?
- 8一次函数y=kx+b的图像与反比例函数y=m/x的图像交于A(-2,1),B(1,n)两点
- 9这句话"1/n的极限为0"对吗
- 10tell sb about sth还是tell sb sth