题目
将f(x)=x展开(0,π)上的余弦级数,并由此证明:∑n=2,∞(1/(n-1)^2)=π^2/8
提问时间:2021-03-13
答案
为了要把f展开为余弦级数,对f作偶式周期延拓
由公式的f的傅立叶系数为】
bn=0,n=1,2...
a0=积分(0,2)xdx=2,
an=2/2积分(0,2)xcosnpaix/2dx
=4(cosnpai-1)/n^2pai^2
=4[(-1)^n-1]/n^2pai^2,n=1,2.
所以当x(0,2),由收敛定理得到
f(x)=x
=1+∑-8/(2k-1)^2pai^2 *cos(2k-1)paix/2
=1-8/pai^2(cospaix/2+1/3^2*cos3paix/2+1/5^2cos5paix/2+...)
证明:令f(1)=1
=1-8/pai^2(cospaix/2+1/3^2*cos3paix/2+1/5^2cos5paix/2+...)
整理有:
:∑n=2,∞(1/(n-1)^2)=π^2/8
由公式的f的傅立叶系数为】
bn=0,n=1,2...
a0=积分(0,2)xdx=2,
an=2/2积分(0,2)xcosnpaix/2dx
=4(cosnpai-1)/n^2pai^2
=4[(-1)^n-1]/n^2pai^2,n=1,2.
所以当x(0,2),由收敛定理得到
f(x)=x
=1+∑-8/(2k-1)^2pai^2 *cos(2k-1)paix/2
=1-8/pai^2(cospaix/2+1/3^2*cos3paix/2+1/5^2cos5paix/2+...)
证明:令f(1)=1
=1-8/pai^2(cospaix/2+1/3^2*cos3paix/2+1/5^2cos5paix/2+...)
整理有:
:∑n=2,∞(1/(n-1)^2)=π^2/8
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1将V1升的H2 和 V2升的N2 在一定条件下发生反应,达到平衡猴,混合气体总体积为V3升(气体体积均在相同条件下测定),则生成NH3的体积是多少?
- 2矩形的对角线相交构成的钝角为120°,短边等于5cm,则对角线的长为_cm.
- 3繁星春水内容简介
- 4化简:(x+y)²/x²-y²
- 5眼睛 凸透镜
- 6把一个高为1米的圆柱体切成底面是许多相等的扇形,再拼成一个近似的长方体,已知拼成后长方体表面积比原来圆柱表面积增加了40平方分米,原来圆柱体的体积是多少立方分米?
- 7当直线L的倾斜角为60度时斜率k等于多少
- 8设y=x平方+ax+b 集合A={x|y=x}={a},M={(a,b)},求M
- 9I am going to go to Shanghai tomorrow否定句 一般疑问句 特殊疑
- 10笑得( )哭得( )高兴得( )听得( )干得( )说得( )必须是AAB式得词语