当前位置: > 求f(x)=(x-2)/(x^2-x-2)的间断点,并判断其类型...
题目
求f(x)=(x-2)/(x^2-x-2)的间断点,并判断其类型

提问时间:2021-03-13

答案
定义域x²-x-2≠0
(x-2)(x+1)≠0
解得x=2或x=-1
f(x)=(x-2)/(x²-x-2)=(x-2)/[(x-2)(x+1)]=1/(x+1)
所以lim【x→2】f(x)=lim【x→2】=1/3 极限存在
lim【x→-1】f(x)=∞,极限不存在
所以间断点为x=2或x=-1
间断点x=2属于第一类间断点
x=-1属于第二类间断点
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.