当前位置: > 已知,如图一,在RT△ACB中,∠C=90°,AC=4CM,BC=3CM,点P由B出发沿BA方向向点A匀速运动,速度为1CM/S,点Q由A...
题目
已知,如图一,在RT△ACB中,∠C=90°,AC=4CM,BC=3CM,点P由B出发沿BA方向向点A匀速运动,速度为1CM/S,点Q由A
点Q由A出发沿AC方向向点C匀速运动,速度为2CM/S,设运动时间为T
当T为何值时,PQ平行BC
2,设△AQP面积为Y,求Y与T之间的函数关系式

提问时间:2021-03-12

答案
(1)由题意:BP=tcm,AQ=2tcm,则CQ=(4-2t)cm,
∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm
∴AP=(5-t)cm,
∵PQ‖BC,∴△APQ∽△ABC,
∴AP∶AB=AQ∶AC,即(5-t)∶5=2t∶4,解得:t=
∴当t为 秒时,PQ‖BC
………………2分
(2)过点Q作QD⊥AB于点D,则易证△AQD∽△ABC
∴AQ∶QD=AB∶BC
∴2t∶DQ=5∶3,∴DQ=
∴△APQ的面积:×AP×QD= (5-t)×
∴y与t之间的函数关系式为:y=
………………5分
(3)由题意:
当面积被平分时有:= × ×3×4,解得:t=
当周长被平分时:(5-t)+2t=t+(4-2t)+3,解得:t=1
∴不存在这样t的值
………………8分
(4)过点P作PE⊥BC于E
易证:△PAE∽△ABC,当PE= QC时,△PQC为等腰三角形,此时△QCP′为菱形
∵△PAE∽△ABC,∴PE∶PB=AC∶AB,∴PE∶t=4∶5,解得:PE=
∵QC=4-2t,∴2× =4-2t,解得:t=
∴当t= 时,四边形PQP′C为菱形
此时,PE= ,BE= ,∴CE=
………………10分
在Rt△CPE中,根据勾股定理可知:PC= = =
∴此菱形的边长为 cm
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.