当前位置: > 已知函数f(x)=3^x,f(m+2)=18,g(x)=λ×3^MX-4^X的定义域为[0,1]...
题目
已知函数f(x)=3^x,f(m+2)=18,g(x)=λ×3^MX-4^X的定义域为[0,1]
求m的值,若函数g(x)在区间[0,1]上是单调递减函数,求实数λ的取值范围

提问时间:2021-03-12

答案
3^(m+2)=18
两边取对数log3
(m+2)=log3(18)=log3 (2*3^2)=log3(2)+2
m=log3(2)
g(x)= λ*3^(log3(2)x) -4^x =2λ*3^x-4^x ( 因为3^log3(2)=2 )
对g(x) 求导得到
g'= 2λln(3)*3^x-ln(4)*4^x
x=[0,1] 时, g'<0
也就是 λ =2ln(2)/2ln(3) *(4/3)^x
=log3(2)*(4/3)^x ( x属于[0,1],且(4/3)^x 单调递增,最大值为4/3)
<=log3(2)*4/3
λ<4/3log3(2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.