当前位置: > 如图,PA、PC分别是△ABC外角∠MAC与∠NCA的平分线,并交于点P,PD⊥BM于点D,PF⊥BN于点F,求证:BP是∠MBN的平分线....
题目
如图,PA、PC分别是△ABC外角∠MAC与∠NCA的平分线,并交于点P,PD⊥BM于点D,PF⊥BN于点F,求证:BP是∠MBN的平分线.

提问时间:2021-03-12

答案
证明:过点P作PE⊥AC于点E.
∵AP平分∠MAC,PD⊥BM,
∴DP=EP(角平分线的性质).
同理PE=PF,
∴PD=PF,又PD⊥BM,PF⊥BN,
∴P在∠MBN的角平分线上,
∴PB平分∠MBN.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.