当前位置: > 1.以知AB=AC,D是AB上一点,DE垂直BC于E,ED的延长线交CA的延长线于F,那么三角形ADF是等腰三角形吗?为什么?...
题目
1.以知AB=AC,D是AB上一点,DE垂直BC于E,ED的延长线交CA的延长线于F,那么三角形ADF是等腰三角形吗?为什么?
2.顶角120度的等腰三角形,剪下来,折叠,使折痕AD垂直AC,D为折痕与BC交点,同理,折AE垂直AB,E为折痕与BC交点,问D、E是BC边上的什么点?三角形ADE是什么三角形?为什么?

提问时间:2021-03-12

答案
1、三角形ADF是等腰三角形
证明:
直角三角形BDE和直角三角形CFE中,∵∠B=∠C
∴∠BDE=∠EFC
∵∠BDE=∠FDA ∴∠FDA=∠F
2、D、E是BC边上的平分点.三角形ADE是等边三角形
证明:
∵顶角120度的等腰三角形两底角 ∴∠B=∠C=30°
∵AD⊥AC ∴∠ADC=60° 同理 ∠AEB=60° 三角形ADE内角和为180°
∴∠DAE=60° ∴AD=AE=DE ( 三角形ADE是等边三角形 )
∵∠BAD=∠ADE- ∠ABD=60°-30°=30° ∴ AD=BD 同理 AE=EC
∴BD=DE=EC (D、E是BC边上的平分点)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.