当前位置: > 证明下列恒等式成立; (1)tan^2α-sin^2α=tan^2α*sin^2α (2)tan*(1-cot^2α)+cot*(1-tan^2α)=0; (3)(sinα-cosα)^2=1-2si...
题目
证明下列恒等式成立; (1)tan^2α-sin^2α=tan^2α*sin^2α (2)tan*(1-cot^2α)+cot*(1-tan^2α)=0; (3)(sinα-cosα)^2=1-2sinαcosα; (4)(tanα+tanβ)/(cotα+cotβ)=tanα*tanβ

提问时间:2021-03-11

答案
1)sina=tana×cosa tana-sina=tana-tana×cosa=tana(1-cosa)=tanasina 2)tanacota=1 tana(1-cota)+cota(1-tana)=tana-tanacota+cota-tanacota=(tana+cota)-tanacota(tana+cota) =(tana+cota)(1-tanacota)=(tana+cota...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.