当前位置: > 已知有三个可逆的矩阵A,B,P,AP=PB,求f(A)=A^3+2A^2-3A.如何能得到f(A)=Pf(B)P^(-1)?...
题目
已知有三个可逆的矩阵A,B,P,AP=PB,求f(A)=A^3+2A^2-3A.如何能得到f(A)=Pf(B)P^(-1)?

提问时间:2021-03-11

答案
可一的,
AP=PB
B=P^(-1)AP.A,B,P可逆,则
B,
suoyi
f(A)~f(B),

f(A)=Pf(B)P^(-1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.