当前位置: > 如果在闭区间[a,b]上,f(x)>0,那么能推出f(x)在a,b上的定积分大于零么?...
题目
如果在闭区间[a,b]上,f(x)>0,那么能推出f(x)在a,b上的定积分大于零么?
书上的条件是大于等于零,结论也是大于等于零.我在想如果都改成大于零是否结论依旧成立.我的想法是,用积分中值定理,把定积分化为f(可噻)乘(b-a).因为f(可噻)>0,b-a>0.所以原来的定积分也大于零,这样证正确么?

提问时间:2021-03-11

答案
如果f可积,这个结论是对的.但用积分中值定理来证,需要f连续.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.