题目
曲面积分∫∫xdydz+y^2dzdy+zdxdy,Σ为平面上x+y+z=1被坐标平面所截的三角形的上侧;求曲面积分
提问时间:2021-03-11
答案
求曲面积分∫∫ xdydz + y^2dzdx + zdxdy,其中Σ为平面上x + y + z = 1被坐标平面所截的三角形的上侧.
补面:
Σ1:x = 0,后侧
Σ2:y = 0,左侧
Σ3:z = 0,下侧
∫∫(Σ+Σ1+Σ2+Σ3) xdydz + y^2dzdy + zdxdy
= ∫∫∫Ω (1 + 2y + 1) dV
= 2∫∫∫Ω (1 + y) dV
= 2∫(0→1) dx ∫(0→1 - x) dy ∫(0→1 - x - y) (1 + y) dz
= 5/12
∫∫Σ1 xdydz + y^2dzdy + zdxdy = 0
∫∫Σ2 xdydz + y^2dzdy + zdxdy = 0
∫∫Σ3 xdydz + y^2dzdy + zdxdy = 0
于是∫∫Σ xdydz + y^2dzdy + zdxdy = 5/12
用原本方法解出:(技巧性的做法,这样才能看出你对曲面积分有多么的了解)
求曲面积分∫∫ xdydz + y^2dzdx + zdxdy,其中Σ为平面上x + y + z = 1被坐标平面所截的三角形的上侧.
∫∫Σ xdydz + y^2dzdx + zdxdy = ∫∫Σ x dydz + ∫∫Σ y^2 dzdx + ∫∫Σ z dxdy
在yz面、∫∫Σ x dydz、x = 1 - y - z、取前侧
= ∫∫D (1 - y - z) dydz、y + z = 1与yz坐标面围成的面积
= ∫(0→1) dy ∫(0→1 - y) (1 - y - z) dz
= 1/6
在zx面、∫∫Σ y^2 dzdx、y = 1 - z - x、取右侧
= ∫∫D (1 - z - x)^2 dzdx
= ∫∫D (z^2 + x^2 + 2zx - 2z - 2x + 1) dzdx
= ∫(0→1) dx ∫(0→1 - x) (z^2 + x^2 + 2zx - 2z - 2x + 1) dz
= 1/12
在xy面、∫∫ z dxdy、z = 1 - x - y、取上侧
= ∫∫D (1 - x - y) dxdy
= ∫(0→1) dx ∫(0→1 - x) (1 - x - y) dy
= 1/6
于是∫∫Σ xdydz + y^2dzdx + zdxdy = 1/6 + 1/12 + 1/6 = 5/12
补面:
Σ1:x = 0,后侧
Σ2:y = 0,左侧
Σ3:z = 0,下侧
∫∫(Σ+Σ1+Σ2+Σ3) xdydz + y^2dzdy + zdxdy
= ∫∫∫Ω (1 + 2y + 1) dV
= 2∫∫∫Ω (1 + y) dV
= 2∫(0→1) dx ∫(0→1 - x) dy ∫(0→1 - x - y) (1 + y) dz
= 5/12
∫∫Σ1 xdydz + y^2dzdy + zdxdy = 0
∫∫Σ2 xdydz + y^2dzdy + zdxdy = 0
∫∫Σ3 xdydz + y^2dzdy + zdxdy = 0
于是∫∫Σ xdydz + y^2dzdy + zdxdy = 5/12
用原本方法解出:(技巧性的做法,这样才能看出你对曲面积分有多么的了解)
求曲面积分∫∫ xdydz + y^2dzdx + zdxdy,其中Σ为平面上x + y + z = 1被坐标平面所截的三角形的上侧.
∫∫Σ xdydz + y^2dzdx + zdxdy = ∫∫Σ x dydz + ∫∫Σ y^2 dzdx + ∫∫Σ z dxdy
在yz面、∫∫Σ x dydz、x = 1 - y - z、取前侧
= ∫∫D (1 - y - z) dydz、y + z = 1与yz坐标面围成的面积
= ∫(0→1) dy ∫(0→1 - y) (1 - y - z) dz
= 1/6
在zx面、∫∫Σ y^2 dzdx、y = 1 - z - x、取右侧
= ∫∫D (1 - z - x)^2 dzdx
= ∫∫D (z^2 + x^2 + 2zx - 2z - 2x + 1) dzdx
= ∫(0→1) dx ∫(0→1 - x) (z^2 + x^2 + 2zx - 2z - 2x + 1) dz
= 1/12
在xy面、∫∫ z dxdy、z = 1 - x - y、取上侧
= ∫∫D (1 - x - y) dxdy
= ∫(0→1) dx ∫(0→1 - x) (1 - x - y) dy
= 1/6
于是∫∫Σ xdydz + y^2dzdx + zdxdy = 1/6 + 1/12 + 1/6 = 5/12
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1英语翻译
- 2抛物线y=4x方中的开口方向是( ),顶点坐标是( ),对称轴是( ).抛物线y=-四分之一x
- 3神经元的神经末梢会与下一个神经元的轴突连接吗?
- 4把目的基因连接到质粒上构建重组质粒时该如何选择限制性内切酶?引物如何设计?
- 5已知△ABC的周长是40cm,AB=14cm,BC=(8+3x)cm,AC=【15-(3x/2)】cm,求x的值,并判断△ABC是什么三角形
- 6阻饶的近义词,周密的近义词,竣工的近义词,藐视的近义词,
- 7某基本生产车间,生产甲、乙两种产品,其中甲产品耗用工时6000小时,乙产品耗用工时4000小时.本月该车间累计发生制造费用为11000元.
- 8一个三角形的底长6米,如果底边延长2米,那么面积就增加3平方米.原来三角形的面积是多少平方米?
- 9英文翻译 也许我可以做这件事情,但是我有许多顾虑,导致今天的局面
- 10仔细观察下列图形有什么规律,横线处应该是什么样的图形,请你画出来
热门考点
- 1某出租车收费标准为:起步价9元行3千米,超过3千米的部分每千米收2.4元,共付燃油费1元钱.王老师从家到学
- 2在中国东部的所有英语表达,
- 3people all over the world loved it at
- 4为什么要等导管口有连续小气泡 才可以开始收集气体
- 5((-3X^5)^2-27X ^8*(-X)^3)/9X^7
- 6在方框里填上不同的自然数.
- 7甲乙两辆汽车同时从两个村庄出发,相向而行,4小时后相遇,已知乙车每小时比甲车多走12km相遇时乙车
- 8已知a=2011x+2012,b=2011x+2011,c=2011x+2013,求a的平方加b的平方加c的平方减ab减bc减ac的值
- 9安全与我,作文300字左右
- 10写一个句子,引用关于爱国的名人名言