题目
强人进
1.设Sn=1/2+1/6+1/8+.+1/n(n+1),且,Sn*Sn+1=3/4,求n的值(过程)
2.已知数列an=(1+2+3+.+n)/n,bn=1/(an*an+1),则bn前n项和为多少?
1.设Sn=1/2+1/6+1/8+.+1/n(n+1),且,Sn*Sn+1=3/4,求n的值(过程)
2.已知数列an=(1+2+3+.+n)/n,bn=1/(an*an+1),则bn前n项和为多少?
提问时间:2021-03-10
答案
1.
Sn=1/2+1/6+1/12+…+1/n(n+1)
=1/(1*2)+1/(2*3)+...+1/(n)*(n+1)
=1-1/2+1/2-1/3+...+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)
所以
Sn+1=1-1/(n+2)=(n+1)/(n+2)
Sn*S(n+1)=3/4
n/(n+1)*(n+1)/(n+2)=3/4
n/(n+2)=3/4
4n=3n+6
n=6
2.
an
=(1+2+3+...+n)/n
=[(1+n)n/2]/n
=(1+n)/2
则:
a(n+1)
=(n+2)/2
则:
bn=1/[an*a(n+1)]
=1/[(n+1)/2]*[(n+2)/2]
=4/[(n+1)(n+2)]
则bn前n项和:
Sn=b1+b2+b3+...+bn
=4/[2*3]+4/[3*4]+4/[4*5]+...+4/[(n+1)(n+2)]
=4*[1/(2*3)+1/(3*4)+1/(4*5)+..+1/(n+1)(n+2)
=4*[(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+...+1/(n+1)-1/(n+2)]
=4*[1/2-1/(n+2)]
=2-4/(n+2)
=2n/(n+2)
Sn=1/2+1/6+1/12+…+1/n(n+1)
=1/(1*2)+1/(2*3)+...+1/(n)*(n+1)
=1-1/2+1/2-1/3+...+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)
所以
Sn+1=1-1/(n+2)=(n+1)/(n+2)
Sn*S(n+1)=3/4
n/(n+1)*(n+1)/(n+2)=3/4
n/(n+2)=3/4
4n=3n+6
n=6
2.
an
=(1+2+3+...+n)/n
=[(1+n)n/2]/n
=(1+n)/2
则:
a(n+1)
=(n+2)/2
则:
bn=1/[an*a(n+1)]
=1/[(n+1)/2]*[(n+2)/2]
=4/[(n+1)(n+2)]
则bn前n项和:
Sn=b1+b2+b3+...+bn
=4/[2*3]+4/[3*4]+4/[4*5]+...+4/[(n+1)(n+2)]
=4*[1/(2*3)+1/(3*4)+1/(4*5)+..+1/(n+1)(n+2)
=4*[(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+...+1/(n+1)-1/(n+2)]
=4*[1/2-1/(n+2)]
=2-4/(n+2)
=2n/(n+2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1六年级第38课的《论语八则》的译文
- 2一倍和两倍到底有什么区别?
- 3求解一道微积分题(第一类曲面积分)
- 4孙武练兵告诉了我们什么道理
- 5以“微笑”为话题,一篇作文.立意新颖深刻
- 6We still have()vegetables in the fridge but we have()bread in it.
- 7比例尺有比值嘛?
- 8往硝酸亚铁与稀盐酸的反应方程式以及离子式
- 9一艘船在灯塔C的正西方向8海里的A处,以每小时20海里的速度沿北偏东30度方向行驶. 1)多长时间后,船距灯
- 10将状况相同的某种绿叶分成四等组,在不同温度下分别暗处理1h,再光照1h(光强相同),测其重量变化,得到如下表的数据.得不出的结论是( ) 组别一二三四温度/℃27282930暗处理后重
热门考点