当前位置: > 函数f(x)可导,f(1)=1满足lnf﹙x﹚-∫f﹙t﹚dt+lnx=0 求fx...
题目
函数f(x)可导,f(1)=1满足lnf﹙x﹚-∫f﹙t﹚dt+lnx=0 求fx

提问时间:2021-03-10

答案
是lnf(x)-∫(1,x)f(t)dt+lnx=0 ?求导得:f'(x)/f(x)-f(x)+1/x=0. 或: f'(x)/(f(x)^2)+1/xf(x)=1.u=1/f(x), u'-(1/x)u=-1.通解为: 1/f(x)=u=(x)(C-lnx),f(1)=1代入:C=1, f(x)=1/(x(1-lnx))
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.