题目
设函数f(x),g(x)都在闭区间[a,b]上连续 `````大学高数
设函数f(x),g(x)都在闭区间[a,b]上连续,在开区间(a,b)内可导,且g(x)不等于0,f(a)g(b)=g(a)f(b).试证(a,b)内至少存在一点试证在(a,b)内至少存在一点ξ,使f `(ξ)g(ξ)=f(ξ)g`(ξ).
设函数f(x),g(x)都在闭区间[a,b]上连续,在开区间(a,b)内可导,且g(x)不等于0,f(a)g(b)=g(a)f(b).试证(a,b)内至少存在一点试证在(a,b)内至少存在一点ξ,使f `(ξ)g(ξ)=f(ξ)g`(ξ).
提问时间:2021-03-10
答案
let
h(x) = f(x)/g(x),then h (x)在闭区间[a,b]上连续,在开区间(a,b)内可导
h'(x)= {f(x)g'(x) - f'(x)g(x)}/ [g(x)]^2
f(a)g(b)=g(a)f(b).
=> f(a)/g(a) = f(b)/g(b)
=> h(a) = h(b)
存在ξ,∈(a,b),令到
h'(ξ,) =0
=>f `(ξ)g(ξ)-f(ξ)g`(ξ)=0
=>f `(ξ)g(ξ)=f(ξ)g`(ξ)..
h(x) = f(x)/g(x),then h (x)在闭区间[a,b]上连续,在开区间(a,b)内可导
h'(x)= {f(x)g'(x) - f'(x)g(x)}/ [g(x)]^2
f(a)g(b)=g(a)f(b).
=> f(a)/g(a) = f(b)/g(b)
=> h(a) = h(b)
存在ξ,∈(a,b),令到
h'(ξ,) =0
=>f `(ξ)g(ξ)-f(ξ)g`(ξ)=0
=>f `(ξ)g(ξ)=f(ξ)g`(ξ)..
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1不知道下面这句话的意思
- 22名男生和3名女生站成一排照相,若男生甲不站两端,3名女生中有且只有两名相邻,则不同的排法种数是( ) A.36 B.42 C.48 D.60
- 3描述法表示集合的时候,在花括号丨线左边表示的集合元素的一般符号通常都用字母,但是一个用描述法表示的集合元素都有很多,难道在数学中一个字母可以表示很多数吗?
- 4关雎改写剧本
- 5a,b,c是正整数,则满足不等式3+a²+b²+c²≤ab+3b+2c-1.求a.b.c的值
- 6已知函数f(x)=ax-3/2 x的最大值不大于1/6 ,又当x属于[1/4,1/2]时,f(x)≥1/8 ,求a的值.
- 7如果a=2x3x5,那么a的因数有()个.
- 8有一个数的小数点向右移动一位比原数大45 原数是多少?
- 9只要方向改变,大小就改变?
- 10lie lay lain这几个词到底是什麽关系啊?有点搞不清楚.
热门考点