当前位置: > 直线l经过点P(2,1),倾斜角为α,它与椭圆x^/2+y^=1相交于A,B两点,求PA*PB的取值范...
题目
直线l经过点P(2,1),倾斜角为α,它与椭圆x^/2+y^=1相交于A,B两点,求PA*PB的取值范

提问时间:2021-03-10

答案
直线l经过点P(2,1),倾斜角为α,可设直线的参数方程为x=2+tcosα,y=1+tsinα
椭圆方程化为 x²+2y²-2=0
把参数方程代入椭圆方程整理得(cos²α+2sin²α)t²+(4sinα+4cosα)t+4=0
上列关于t的方程的两根t1,t2就是PA和PB
∴有根和系数的关系得
PA*PB=t1*t2=4/((cos²α+2sin²α)=4/((1-sinα²α+2sin²α)=4/(sin²α+1)
∵0≤sin²α≤1
∴1≤sin²α+1≤2
∴1/2≤1/sin²α≤1
即1/2≤PA*PB≤1
请复核数字计算
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.