题目
过P(1,1),且分别与直线l1:4x-3y-1=0,l2:4x-3y+4=o相切的圆的方程为?
提问时间:2021-03-07
答案
设圆心坐标为(a,b)半径为r,则圆的标准方程可设为(x-a)^2+(y-b)^2=r^2
Ax+By+C1=0;Ax+By+C2=0两平行直线间距离公式d=|C1-C2|/√(A^2+B^2),
因为直线l1:4x-3y-1=0,l2:4x-3y+4=0斜率相等,所以平行,又都与圆相切,说明d=2r=|-1-4|/√(4^2+3^2)=1 所以r=1/2
此外圆心到直线l1的距离等于圆心到l2的距离,即|4a-3b-1|/√(4^2+3^2)=|4a-3b+4|/√(4^2+3^2)=1/2,即|4a-3b-1|=|4a-3b+4|也就是4a-3b-1=-(4a-3b+4)可得b=4a/3+1/2.
由于该圆过点p(1,1),代入得(1-a)^2+(1-b)^2=1/4同时又有b=4a/3+1/2最后可得a=3/5,则b=13/10.
所以圆的方程为(x-3/5)^2+(y-13/10)^2=1/4.
Ax+By+C1=0;Ax+By+C2=0两平行直线间距离公式d=|C1-C2|/√(A^2+B^2),
因为直线l1:4x-3y-1=0,l2:4x-3y+4=0斜率相等,所以平行,又都与圆相切,说明d=2r=|-1-4|/√(4^2+3^2)=1 所以r=1/2
此外圆心到直线l1的距离等于圆心到l2的距离,即|4a-3b-1|/√(4^2+3^2)=|4a-3b+4|/√(4^2+3^2)=1/2,即|4a-3b-1|=|4a-3b+4|也就是4a-3b-1=-(4a-3b+4)可得b=4a/3+1/2.
由于该圆过点p(1,1),代入得(1-a)^2+(1-b)^2=1/4同时又有b=4a/3+1/2最后可得a=3/5,则b=13/10.
所以圆的方程为(x-3/5)^2+(y-13/10)^2=1/4.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1一项工程,如果甲单独做5天乙单独做7天可以完成工程的1/5;如果甲单独做7天乙单独做5可以完成工程的1/4.
- 2铝型材380*260*80等到于多少公斤
- 3判断句子是否正确,正确的在括号里大√,错误的在括号里改正.
- 4商周青铜器的用途和特点是什么?
- 5When Mr. Finch retired, he bought a small house in a village near the sea. The house was built in f
- 6三条线和三个圆可以拼成什么图形
- 710除以x=10除以3-10除以4
- 8snow-to-liquid ratio怎么翻译?
- 9根据解释写出相应的成语
- 10该怎么办呢?
热门考点