当前位置: > 利用秦九韶算法分别计算f(x)=8x7+5x6+3x4+2x+1在x=2与x=-1时的值,并判断多项式f(x)在区间[-1,2]有没有零点....
题目
利用秦九韶算法分别计算f(x)=8x7+5x6+3x4+2x+1在x=2与x=-1时的值,并判断多项式f(x)在区间[-1,2]有没有零点.

提问时间:2021-03-07

答案
由秦九韶算法可得f(x)=8x7+5x6+3x4+2x+1=((((((8x+5)x)x+3)x)x)x+2)x+1,
f(2)=((((((8×2+5)×2)×2+3)×2)×2)×2+2)×2+1
=(((((21×2)×2)+3)×2)×2)×2+2)×2+1
=(((42×2+3)×8)+2)×2+1
=(((84+3)×8)+2)×2+1,
=(87×8+2)×2+1
=698×2+1
=1397.
同理可得f(-1)=-1.
∵f(2)f(-1)<0,
∴多项式f(x)在区间[-1,2]有零点.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.