题目
高一数学:已知tanα=1,3sinβ=sin(2α+β),求⑴tanβ,⑵tan(α+β),⑶tan(α+β)/2,要求详解.谢谢!
提问时间:2021-03-06
答案
tanα=1
sin2α=2tanα/(1+tan^2α) = 2*1/(1+1^2)=1
cos2α=(1-tan^2α)/(1+tan^2α) = (1-1^2)/(1+1^2)=0
3sinβ=sin(2α+β)
3sinβ=sin2αcosβ+cos2αsinβ
3sinβ=1*cosβ+0*sinβ
3sinβ=cosβ
tanβ=1/3
tan(α+β) = (tanα+tanβ)/(1-tanαtanβ) = (1+1/3)/(1-1*1/3) = 2
tan(α+β) = 2tan{((α+β)/2}/ {1-tan((α+β)/2)^2} = 2
2tan{((α+β)/2} = 2- 2{tan((α+β)/2)^2
tan{((α+β)/2} = 1-{tan((α+β)/2)^2
{tan((α+β)/2)} ^2 + tan((α+β)/2) - 1 = 0
tan((α+β)/2) = (-1±根号5)/2
sin2α=2tanα/(1+tan^2α) = 2*1/(1+1^2)=1
cos2α=(1-tan^2α)/(1+tan^2α) = (1-1^2)/(1+1^2)=0
3sinβ=sin(2α+β)
3sinβ=sin2αcosβ+cos2αsinβ
3sinβ=1*cosβ+0*sinβ
3sinβ=cosβ
tanβ=1/3
tan(α+β) = (tanα+tanβ)/(1-tanαtanβ) = (1+1/3)/(1-1*1/3) = 2
tan(α+β) = 2tan{((α+β)/2}/ {1-tan((α+β)/2)^2} = 2
2tan{((α+β)/2} = 2- 2{tan((α+β)/2)^2
tan{((α+β)/2} = 1-{tan((α+β)/2)^2
{tan((α+β)/2)} ^2 + tan((α+β)/2) - 1 = 0
tan((α+β)/2) = (-1±根号5)/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1A是m*n矩阵,B是n*s矩阵,X是n*1矩阵,证明AB=O的充要条件是B的每一列都是齐次方程组AX=O的解
- 2求英文翻译!穿vans的女生最美了!
- 3-It seem that he want to change his___ -Yes,he will go to the Great Wall instead of going to the...
- 4椭圆x^2/4+y^2/3=1的面积为
- 5Tom,please keep your room (not dirty)
- 6地球一小时是自愿关灯的吗,为什么我们这里强制停电了?
- 7数列{an}中,an>0且前n项的和为Sn,且S1=2,当n>2时,Sn=2an.求通项公式an
- 8碘量法如何测臭氧浓度?
- 9某铁的氧化物用5mol/L盐酸140mL恰好完全溶解,所得溶液还能吸收标状下氯气0.56L其中Fe2+全转化为Fe3+,该...
- 10金属棒在匀强磁场中运动,损失的动能恰好是焦耳热吗?
热门考点