当前位置: > 证明:方程x=asinx+b(a>0,b>0)至少有一不超过a+b的正根....
题目
证明:方程x=asinx+b(a>0,b>0)至少有一不超过a+b的正根.

提问时间:2021-03-05

答案
设f(x)=x-asinx-b,下面即证f(x)至少存在一个不超过a+b的正零点,显然f(x)连续
f(0)=-b=0
若f(a+b)=0,则原命题成立;
若f(a+b)>0,则f(x)在[0,a+b]的两个端点函数值异号,且f(x)连续,由零点定理存在x0属于(0,a+b)使得f(x0)=0,证毕.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.