当前位置: > 1/z^2(z-i)在以i为中心的圆域内展开为洛朗级数...
题目
1/z^2(z-i)在以i为中心的圆域内展开为洛朗级数

提问时间:2021-03-05

答案
1/z=1/[i+(z-i)]=1/i×1/[1+(z-i)/i]=1/i×1/[1-(z-i)i]=-i×∑{n=0~∞}[(z-i)i]^n
1/z²=-(1/z)‘=-{-i×∑{n=0~∞}[(z-i)i]^n}’=i∑{n=1~∞}ni^n(z-i)^{n-1}=∑{n=1~∞}ni^{n+1}(z-i)^{n-1}
因此
1/z²(z-i)=1/(z-i)×1/z²=1/(z-i)×∑{n=1~∞}ni^{n+1}(z-i)^{n-1}=∑{n=1~∞}ni^{n+1}(z-i)^{n-2}
对z的要求是0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.