题目
如何计算下列定积分,∫ l n(1+x) / (1+x^2) dx 和 ∫ (1 / 1+(tanx)^√2)dx
1、
∫ (1 / 1+(tanx)^√2)dx 其中 积分下限是0 积分上限是 2/π
2、
∫ l n(1+x) / (1+x^2) dx 其中 积分下限是0 积分上限是 1
首先令tant=x
= ∫ ln(1+tant) dt 其中 积分下限是0 积分上限是 π /4
令u=π-t
得如下:
=∫(ln2-ln(1+tant)dt 其中 积分下限是0 积分上限是 π /4
1、
∫ (1 / 1+(tanx)^√2)dx 其中 积分下限是0 积分上限是 2/π
2、
∫ l n(1+x) / (1+x^2) dx 其中 积分下限是0 积分上限是 1
首先令tant=x
= ∫ ln(1+tant) dt 其中 积分下限是0 积分上限是 π /4
令u=π-t
得如下:
=∫(ln2-ln(1+tant)dt 其中 积分下限是0 积分上限是 π /4
提问时间:2021-03-04
答案
1.u=√tanx ,x=arxtan u^2 ,dx= 2u/(1+u^4) du ,u从 0到 +∞
I = ∫ 2u / [(1+u)*(1+u^4)] du = …… = ∏/4
2.前边的步骤都对,
I = ∏√2 /4 – I => I =∏√2 /8
I = ∫ 2u / [(1+u)*(1+u^4)] du = …… = ∏/4
2.前边的步骤都对,
I = ∏√2 /4 – I => I =∏√2 /8
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1三角形ABC中,若cosB=3/5,cos=5/13则sinA的值
- 22.5mol H2O中有 mol 原子
- 35X+5.6=8X-12.6 方程怎样解
- 4已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图像关于电(a,b)中心对称”
- 5I like English A a lot B lot C very D a
- 6一只温度计示数不准,沸水95度,冰水混合物5度,32度实际是?
- 7甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求
- 8925-450÷18×36简便运算
- 9a light is hung from the front of the every night(改被动语态)
- 10英语翻译