当前位置: > 三角形四心的组合的性质证明...
题目
三角形四心的组合的性质证明
1.三角形的任何顶点到垂心的距离,等于外心到对边距离的两倍.
2.三角形的内心和任一顶点的连线平分外心、垂心和这一顶点连线所成的角.
3.三角形的外心、垂心、重心三个点在一条直线上(需证明),且重心与垂心的距离是外心与重心距离的2倍.
三个命题(其实是4个)都帮我证明下,有图最好,如果没有图端点一定要说清楚,

提问时间:2021-03-04

答案
1:画任意一个三角形ABC,垂心为D,外心为E,设B垂AC于F,C垂AB于H,做△ABC的外接圆,ABC为三顶点abc为三内角 S为△ABC的面积 由正弦定理AB/sinc=BC/sina=AC/sinb=2R 由图像得∠c=∠BEH ∴EH=Rcosc=AB/(2tanc) CD=CF/cos∠...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.