当前位置: > 函数f(x)=|sinπx-cosπx|对任意x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x2-x1|的最小值为...
题目
函数f(x)=|sinπx-cosπx|对任意x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x2-x1|的最小值为

提问时间:2021-03-04

答案
f(x)=√2|sin(πx-π/4)|
所以,0≤f(x)≤√2
f(x)的最小正周期=(2π/π)/2=1
任意x∈R都有f(x1)≤f(x)≤f(x2)成立
则,|x2-x1|的最小值=最小正周期的一半=1/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.