当前位置: > 求方阵A=(1,2,2)(2,1,2,)(2,2,1)的特征值与特征向量...
题目
求方阵A=(1,2,2)(2,1,2,)(2,2,1)的特征值与特征向量

提问时间:2021-03-04

答案
设特征值为λ
则A-λE=1-λ 2 2
2 1-λ 2
2 2 1-λ
令其行列式等于0,
化简得到:(-1-λ)(λ+1)(λ-5)=0,
所以方阵A的特征值为:λ1=λ2= -1,λ3=5
当λ= -1时,
A+E=(2,2,2 ~ ( 1,1,1
2,2,2 0,0,0
2,2,2) 0,0,0)
得到其两个基础解系为
p1= 1 p2= 1
-1 0
0 -1
当λ=5时,
A-5E=(-4,2,2 ~ ( 1,0,-1
2,-4,2 0,1,-1
2,2,-4) 0,0,0)
得到其基础解系为
p3= 1
1
1
所以这个三阶矩阵的特征值为:λ1=λ2= -1,λ3=5
其对应的特征向量分别是
p1=1 p2=1 p3=1
-1 0 1
0 -1 1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.