当前位置: > 证明:一个正整数的奇数位数字之和与偶数位数字之和的差能被11整除,那么这个正整数能被11整除(不用同余...
题目
证明:一个正整数的奇数位数字之和与偶数位数字之和的差能被11整除,那么这个正整数能被11整除(不用同余

提问时间:2021-03-04

答案
比如证明70345能被11整除,则70345=7*10000+0*1000+3*100+4*10+5=7*(9999+1)+0*(1001-1)+3*(99+1)+4*(11-1)+5=7-0+3-4+5+(7*9999+0*1001+3*99+4*11)=(7+3+5)-(0+4)+(7*909+0*91+3*11+4)*11因为(7*909+0*91+3*11+4)*11...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.