当前位置: > 三角形ABC的三个内角分别为∠A、∠B、∠C,那么下列各式中成立的是...
题目
三角形ABC的三个内角分别为∠A、∠B、∠C,那么下列各式中成立的是
A、sin (∠A+∠B/2)=sin∠C/2
B、cos(∠B+∠C/2)=cos∠A/2
C、tan(∠A+∠C/2)=tan∠B/2
D、sin ∠A/2=cos(∠B+∠C/2)

提问时间:2021-03-04

答案
在三角形ABC中,∠A+∠B+∠C=180°
A、sin[(∠A+∠B)/2]=sin[(π-∠C)/2]=sin[π/2-∠C/2]=cos∠C/2
B、cos[(∠B+∠C)/2]=cos[(π-∠A)/2]=cos[π/2-∠A/2]=sin∠A/2
C、tan[(∠A+∠C)/2]=tan[(π-∠B)/2]=tan(π/2-∠B/2)=cot∠B/2
D、sin ∠A/2=sin[π-(∠B+∠C)/2]=sin[π/2-(∠B+∠C)/2]=cos[(∠B+∠C)/2]
因此D是正确的.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.