当前位置: > 已知函数f(x)=k•4x-k•2x+1-4(k+5)在区间[0,2]上存在零点,则实数k的取值范围是_....
题目
已知函数f(x)=k•4x-k•2x+1-4(k+5)在区间[0,2]上存在零点,则实数k的取值范围是______.

提问时间:2021-03-04

答案
令t=2x,则t∈[1,4],
∴f(t)=k•t2-2k•t-4(k+5)=k(t-1)2-5(k+4)在[1,4]上有零点,
∴f(1)f(4)≤0即可,即-5(k+4)(4k-20)≤0,
解得k≥5或k≤-4,
故答案为:(-∞,-4]∪[5,+∞).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.