当前位置: > 关于全微分里证明可微的高数题求解!...
题目
关于全微分里证明可微的高数题求解!
设f(x,y)在点(0,0)的领域有定义,且fx(0,0)=fy(0,0)=0,证明:f(x,y)在点(0,0)可微的充分必要条件是当(x,y)趋近于(0,0)时,[f(x,y)-f(0,0)]/根号下(x^2+y^2)的极限值为0.

提问时间:2021-03-04

答案
要证明函数在(0,0)点可微的充要条件就是证明f(x,y)-f(0,0)=Ax+By+o(x^2+y^2)^(1/2),即证明 lim[f(x,y)-f(0,0)-Ax-By]/(x^2+y^2)^(1/2)=0,实际上只要找到满足条件的A.B存在即可.因此可令y=0,则x趋于0时,lim[f(x,y)-f(0,0)-Ax-By]/(x^2+y^2)^(1/2)=lim[f(x,0)-f(0,0)-Ax]/x的绝对值= fx(0,0)-A=0,所以A=0,同理B=0,故充要条件为lim[f(x,y)-f(0,0)]/(x^2+y^2)^(1/2)=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.