当前位置: > 【高三数学】基本不等式求最大值的题目》》...
题目
【高三数学】基本不等式求最大值的题目》》
设x,y∈R+,且满足x+4y=40,则lgx+lgy的最大值是多少?
写出规范的证明过程和答案即可,

提问时间:2021-03-04

答案
lgx+lgy=lg(x*y)
x+4y=40 => x=40-4y
x*y=40y-4y^2
对于正数y,40y-4y^2的最大值为100
即x*y的最大值为100
所以最大值lgx+lgy=lg(x*y)=lg100=2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.