当前位置: > 已知f(x)满足,对任意的m,n属于R,都有f(m-n)=f(m)-f(n),f(1)=2...
题目
已知f(x)满足,对任意的m,n属于R,都有f(m-n)=f(m)-f(n),f(1)=2
当x>0,f(x)>0
1)求证:f(x)为奇函数
2)解不等式f(x)-f(2x+1)

提问时间:2021-03-04

答案
(1)令m=n=1,f(0)=f(1-1)=f(1)-f(1)=0
所以有:f(-x)=f(0-x)=f(0)-f(x)=-f(x)
所以f(x)为奇函数
(2)令m=2,n=1,有f(2-1)=f(1)=f(2)-f(1)
所以f(2)=2f(1)=4
设x1>x2>0,所以f(x1-x2)=f(x1)-f(x2)>0
所以f(x)在(0,+∞)上是增函数,又因为f(x)为奇函数,所以f(x)在R上是增函数
所以:f(x)-f(2x+1)=f(-x-1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.