题目
抽象函数题
1、f(x1/x2)=f(x1)-(x2)且当x>1时,f(x)1 若f(4)=5,解不等式f(3m^-m-2)
1、f(x1/x2)=f(x1)-(x2)且当x>1时,f(x)1 若f(4)=5,解不等式f(3m^-m-2)
提问时间:2021-03-04
答案
设x1>x2>0.
f(x1)-f(x2)=f(x1/x2)
∵x1>x2 ∴x1/x2>1
∵当x>1时,f(x)<0
∴f(x1)-f(x2)<0
∴f(x)在区间(0,+∞)是减函数
由 x1=x2时可得 f(1)=O
∵f(1)=O f(3)=-1
∴f(1/3)=f(1)-f(3)
=0-(-1)=1
f(3)-f(1/3)=f(3÷(1/3))=f(9)=-1-1=-2
即f(|x|)9
∴x>9或xx 因为f(a+b)=f(a)+f(b)-1,所以有f(x+b)-f(x)=f(b)-1,因为b>0所以f(b)>1 所以
f(x+b)-f(x)>0
所以f(x)是R上的增函数
(2)
因为f(4)=5 所以f(2+2)=f(2)+f(2)-1=5
所以f(2)=3
因为函数单调递增
所以3m*m-m-2
f(x1)-f(x2)=f(x1/x2)
∵x1>x2 ∴x1/x2>1
∵当x>1时,f(x)<0
∴f(x1)-f(x2)<0
∴f(x)在区间(0,+∞)是减函数
由 x1=x2时可得 f(1)=O
∵f(1)=O f(3)=-1
∴f(1/3)=f(1)-f(3)
=0-(-1)=1
f(3)-f(1/3)=f(3÷(1/3))=f(9)=-1-1=-2
即f(|x|)9
∴x>9或xx 因为f(a+b)=f(a)+f(b)-1,所以有f(x+b)-f(x)=f(b)-1,因为b>0所以f(b)>1 所以
f(x+b)-f(x)>0
所以f(x)是R上的增函数
(2)
因为f(4)=5 所以f(2+2)=f(2)+f(2)-1=5
所以f(2)=3
因为函数单调递增
所以3m*m-m-2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1已知已知根号中a的立方+64+b的立方-27的绝对值=0,求(a-b)平方b的立方根
- 2芡 字念什么
- 3鸡蛋的内部结构和作用
- 4数据结构中,与使用的计算机无关的是数据的() A存储结构 C逻辑结构 D物理和存储结构
- 5Our school football team did a good job.They won the match at last.
- 6某车间举办技术革新培训班,如果抽去全车间男工人数的1/3和女工人数的1/4后共有90人参加,如果抽去全车间男工人数的1/4和女工人数的1/3后共有85人参加.问这个车间有男工多少人?
- 7What ___ feel like to lie on the soft beech...
- 824点在线计算器
- 9请问在没有标准大气压的情况下怎样使水的沸点达到100摄氏度
- 10朋友们,怎样体会文章的思想感情呢?