当前位置: > 求曲线 y=x2-2x,y=0,x=1,x=3所围成的平面图形的面积S,并求该平面图形绕y轴旋转一周所得旋转体的体积V....
题目
求曲线 y=x2-2x,y=0,x=1,x=3所围成的平面图形的面积S,并求该平面图形绕y轴旋转一周所得旋转体的体积V.

提问时间:2021-03-04

答案
本题所求平面图形如下图:则平面图形的面积S=∫ 21(0−y)dx+∫ 32(y−0)dx=∫ 21(2x−x2)dx+∫ 32(x2−2x)dx=[x2−13x3]21+[13x3−x2]32=[(4−83)−(1−13)]+[(9−9)−(83−4)]=2该平面图形绕y...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.