当前位置: > 证明f(x)=3/x+1在[3,5]上单调递减,并求出函数在该区间的最值.最大值为什么是2?最小值为什么是1......
题目
证明f(x)=3/x+1在[3,5]上单调递减,并求出函数在该区间的最值.最大值为什么是2?最小值为什么是1...
证明f(x)=3/x+1在[3,5]上单调递减,并求出函数在该区间的最值.最大值为什么是2?最小值为什么是1.我算出的是4分之3和2分之一!

提问时间:2021-03-04

答案
函数f(x)=1+3/x
∴f'(x)=-3/x²<0
因此函数在定义域上为单调递减函数
∴当x=3时 函数取最大值f(3)=1+3/3=2
当x=5时 函数取最小值f(5)=1+3/5=1.6.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.